Ku70, a Component of DNA-Dependent Protein Kinase, Is a Mammalian Receptor for Rickettsia conorii
نویسندگان
چکیده
Rickettsia conorii, a strictly intracellular and category C priority bacterial pathogen (NIAID), invades different mammalian cells. Although some signaling events involved in bacterial entry have been documented, the bacterial and host proteins mediating entry were not known. We report the identification of the Ku70 subunit of DNA-dependent protein kinase (DNA-PK) as a receptor involved in R. conorii internalization. Ku70 is recruited to R. conorii entry sites, and inhibition of Ku70 expression impairs R. conorii internalization. Bacterial invasion is dependent on the presence of cholesterol-enriched microdomains containing Ku70. R. conorii infection stimulates the ubiquitination of Ku70. In addition, the ubiquitin ligase c-Cbl is recruited to R. conorii entry foci, and downregulation of endogenous c-Cbl blocks bacterial invasion and Ku70 ubiquitination. An affinity chromatography approach identified the rickettsial protein rOmpB as a ligand for Ku70. This is the first report of a receptor-ligand interaction involved in the internalization of any rickettsial species.
منابع مشابه
Early signaling events involved in the entry of Rickettsia conorii into mammalian cells.
Rickettsia conorii, the causative agent of Mediterranean spotted fever, is able to attach to and invade a variety of cell types both in vitro and in vivo. Although previous studies show that entry of R. conorii into non-phagocytic cells relies on actin polymerization, little else is known about the molecular details governing Rickettsia-host cell interactions and actin rearrangements. We determ...
متن کاملNonselective Persistence of a Rickettsia conorii Extrachromosomal Plasmid during Mammalian Infection.
Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models...
متن کاملDeformed Epidermal Autoregulatory Factor-1 (DEAF1) Interacts with the Ku70 Subunit of the DNA-Dependent Protein Kinase Complex
Deformed Epidermal Autoregulatory Factor 1 (DEAF1) is a transcription factor linked to suicide, cancer, autoimmune disorders and neural tube defects. To better understand the role of DEAF1 in protein interaction networks, a GST-DEAF1 fusion protein was used to isolate interacting proteins in mammalian cell lysates, and the XRCC6 (Ku70) and the XRCC5 (Ku80) subunits of DNA dependent protein kina...
متن کاملComparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi.
The Gram-negative intracellular bacteria Rickettsia conorii and Rickettsia typhi are the aetiological agents of Mediterranean spotted fever and endemic typhus, respectively, in humans. Infection of endothelial cells (ECs) lining vessel walls, and the resultant vascular inflammation and haemostatic alterations are salient pathogenetic features of both of these rickettsial diseases. An important ...
متن کاملBeta interferon-mediated activation of signal transducer and activator of transcription protein 1 interferes with Rickettsia conorii replication in human endothelial cells.
Infection of the endothelial cell lining of blood vessels with Rickettsia conorii, the causative agent of Mediterranean spotted fever, results in endothelial activation. We investigated the effects of R. conorii infection on the status of the Janus kinase (JAK)-signal transducer and activator of transcription protein (STAT) signaling pathway in human microvascular endothelial cells (HMECs), the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 123 شماره
صفحات -
تاریخ انتشار 2005